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Abstract

The bending of a Timoshenko beam resting on a Kerr-type three-parameter elastic foundation is introduced, its gov-
erning differential equations are formulated and analytically solved, and the solutions are discussed and applied to par-
ticular problems. Parametric analyses of elastically supported beams of infinite and finite length are carried out and
comparisons are made between one, two or three-parameter foundation models and more accurate 2D finite element
models. In order to estimate the necessary soil parameters, an analytical procedure based on the modified Vlasov model
is proposed. The presented solutions and applications show the superiority of the Kerr-type foundation model com-
pared to one or two-parameter models.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The problem of a beam resting on elastic foundation is very often encountered in the analysis of build-
ing, geotechnical, highway, and railroad structures. Its solution demands the modeling of (a) the mechan-
ical behavior of the beam, (b) the mechanical behavior of the soil as elastic subgrade and (c) the form of
interaction between the beam and the soil.

As far as the beam is concerned, most engineering analyses are based on the classical Bernoulli–Euler
theory, in which straight lines or planes normal to the neutral beam axis remain straight and normal after
deformation. This theory thus neglects the effect of transverse shear deformations, a condition that holds
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only in the case of slender beams. It is well-known that the error in shear force and moment distribution can
become significant in the case of foundation beams with small length-to-depth ratio subjected to closely
spaced discrete column loads, as well as in the case of flanged beams and beams with sandwich-like
cross-section. To confront this problem, the well-known Timoshenko beam model, in which the effect of
transverse shear deflections is considered, can be used.

While fairly realistic and efficient models of the material properties and the mechanical behavior of the
beam can be established by using the Timoshenko or even the Bernoulli–Euler theory, the characteristics
that represent the mechanical behavior of the subsoil and its interaction with the beam resting on it are dif-
ficult to model. Assuming a linear elastic, homogeneous and isotropic behavior of the soil, two major clas-
ses of soil models can be identified in the literature: (i) the continuous medium models, and (ii) the so-called
‘‘mechanical’’ models.

The continuous medium models, based on the fundamental hypothesis of an elastic semi-infinite space,
are more accurate, but it is difficult to obtain an exact analytical solution even after introducing simplifying
assumptions (Selvadurai, 1979). Of course, on the basis of practical considerations, the effective foundation
area can be restricted to finite dimensions, and the finite element technique can be applied to obtain numer-
ical results. Furthermore, potentially existing symmetries in the superstructure can be utilized to reduce the
initial 3D problem to a 2D one. Although such finite element models guarantee a rather precise calculation
of stresses and deformations, they require significant computer capacity and processing time and, more
importantly, thorough knowledge and sound judgment on the part of the engineer. On the other hand,
mechanical models are clearly less precise, but conceptually simple and easier to use. The oldest, most fa-
mous and most frequently used mechanical model is the one devised by Winkler (1867), in which the beam-
supporting soil is modeled as a series of closely spaced, mutually independent, linear elastic vertical springs
which, evidently, provide resistance in direct proportion to the deflection of the beam. In the Winkler
model, the properties of the soil are described only by the parameter k, which represents the stiffness of
the vertical spring. Thanks to its simple mathematic formulation, this one-parameter model can be easily
employed in a variety of problems (Hetenyi, 1946) and gives satisfactory results in many practical situa-
tions. However, it is considered as a rather crude approximation of the true mechanical behavior of the soil
material, mainly due to its inability to take into account the continuity or cohesion of the soil. This limi-
tation, i.e., the assumption that there is no interaction between adjacent springs, also results in overlooking
the influence of the soil on either side of the beam. To overcome this weakness, several two-parameter elas-
tic foundation models have been suggested (Filonenko-Borodich, 1940; Pasternak, 1954; Vlasov and
Leontiev, 1966). In these models, the first parameter represents the stiffness of the vertical spring, as in
the Winkler model, whereas the second parameter is introduced to account for the coupling effect of the
linear elastic springs. It is worth mentioning that the interaction enabled by this second parameter also al-
lows the consideration of the influence of the soil on either side of the beam. Despite the introduction of a
second parameter, the mathematical formulation of the problem and the corresponding analytical solutions
remain relatively simple (Selvadurai, 1979). Thus, two-parameter models are less restrictive than the Win-
kler model but not as complicated as the elastic continuum model. It is interesting to note that, in devel-
oping foundation models, two major procedures are normally used. The first starts with the soil as a
semi-infinite continuum and then introduce simplifying assumptions with respect to displacements or/
and stresses in order to proceed to analytically or numerically solvable relations. The second starts with
the simplest mechanical model, i.e. the Winkler model and, in order to bring it closer to reality, assume
various kinds of interaction between the independent springs. Both procedures can be used in order to
developed more sophisticated models comprising three independent parameters for the description of the
soil behaviour. These three-parameter models constitute a generalization of two-parameter models, the
third parameter being used to make them more realistic and effective. This category includes the models
developed by Kerr, Hetenyi and Reissner (Kerr, 1965). One of the basic features of the three-parameter
models is the flexibility and convenience that they offer in the determination of the level of ‘‘continuity’’
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of the vertical displacements at the boundaries between the loaded and the unloaded surfaces of the soil
(Hetenyi, 1950). This feature renders them capable of distributing stresses correctly, whether the soil is
cohesive or non-cohesive. Among all three-parameter models, the Kerr model is of particular interest. It
represents a generalization of the two-parameter Pasternak model for which a series of solutions and appli-
cations are already available. The Reissner model (1967), which was studied by Horvath (1983a,b, 1993), is
also worthy of consideration. His study led to far-reaching conclusions that constitute proof of the supe-
riority of the tree-parameter model over the rest of the mechanical models.

In the present paper, the governing equations for the bending of a Timoshenko beam on a Kerr-type
three-parameter elastic foundation are developed and solved. As no solution can be applied in the real
world without realistic estimates for the soil parameters involved, an analytical process of estimating the
three parameters of the Kerr model is also presented. The estimation of the first two parameters is based
on the modified Vlasov model (Vallabhan and Das, 1988, 1991a,b), while a parametric investigation, which
forms an integral part of the aforementioned process, leads to the estimation of the third parameter. This
investigation is carried out through comparisons of the results obtained from the analysis using the three-
parameter model with results from the analysis using 2D finite element models. Apart from presenting a
working solution for a three-parameter modeling procedure for Timoshenko beams resting on elastic foun-
dation, the main objective of the present study is to clarify the particular use of the Kerr model and to dem-
onstrate that it is more precise compared to one or two-parameter models, while remaining relatively
simple.
2. Formulation of the differential equations

The Kerr model (1965) was introduced as an attempt to produce a generalization of the two-parameter
Pasternak model (1954). It consists of two linear elastic spring layers of constants c [kN/m3] and k [kN/m3],
respectively, interconnected by a unit thickness shear layer of constant G [kN/m] (Fig. 1). The governing
Fig. 1. Mechanical model, boundary conditions and basic stress–strain relationships for a Timoshenko beam resting on Kerr type
elastic subgrade.
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differential equations describing the behavior of this mechanical model are based on the following two basic
assumptions:

• The beam resting on the Kerr-type elastic subgrade is a Timoshenko beam with constant cross-section, in
which the effect of the shear on the curvature is taken into account.

• Plain strain conditions, which allow the consideration of a foundation strip of infinite length and finite
width b, are valid.

In Fig. 1, the basic stress–strain relationships and the boundary conditions for a Timoshenko beam rest-
ing on Kerr-type elastic subgrade are given. In order to derive the governing differential equations, the prin-
ciple of stationary potential energy is used. The potential energy function of the soil-beam system is given
by
p ¼ ½pBðwII;wkII;wÞ þ pðIIÞ
S ðwII;wkIIÞ� þ pðIÞ

S ðwkIÞ þ pðIIIÞ
S ðwkIIIÞ ) p ¼ pI þ pII þ pIII ð1Þ
As indicated by Eq. (1), the potential energy consists of three terms, each of them corresponding to the
deformation energy of the three regions that comprise the soil-beam system (Fig. 1). These terms are:
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In each of the above relations, w represents the total vertical displacement of the axis of the beam, wc rep-
resents the component of w caused by the deformation of the upper spring layer and wk represents the com-
ponent of w caused by the deformation of the lower spring layer, respectively. In Eq. (2b), w is the bending
rotation of the cross-section, (dw/dx � w) = b is the shear rotation of the cross-section, GB is the shear
modulus of the beam material, F 0 is the effective shear area of the cross-section (F 0 = nF, F is the cross-sec-
tion area, and n the shear factor) and U = GBF

0. Finally, b is the width of the strip of elastic subgrade,
which coincides with the width of the beam.

According to the principle of stationary total potential energy, the condition of equilibrium of the system
requires:
p ¼ stat: ) p ¼ pI þ pII þ pIII ¼ stat: ð3Þ

For p to become stationary, dp = 0 is a necessary condition, i.e. the first variation of p must vanish:
dp ¼ 0 ) dp ¼ dpI þ dpII þ dpIII ¼ 0 ð4Þ

Performing the variations of Eqs. (2a)–(2c) and integrating by parts, where necessary, the following rela-
tions are obtained:
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where c ¼ Cb (kN/m2), k ¼ Kb (kN/m2), and G ¼ Gb (kN).
The differential equations of equilibrium for the three regions which constitute the soil-beam system, as

well as the respective boundary conditions at x = 0, x = L and x ! ± 1 are obtained from the requirement
dp = dpI + dpII + dpIII = 0.

2.1. Regions I and III

From Eqs. (5a) and (5c), the equations of the vertical displacements of the shear layer at regions I and III
are obtained:
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d2wkI

dx2
� k

G

� �
wkI ¼ 0 ð6aÞ
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d2wkIII

dx2
� k

G

� �
wkIII ¼ 0 ð6bÞ
2.2. Region II

With regard to region II, which is the part of the soil surface under the beam and, therefore, the part of
the soil directly loaded by the beam, the following system of three differential equations is obtained from
Eq. (5b):
cðwII � wkIIÞ � U
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� �
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By combining Eqs. (7a)–(7c), the uncoupling of wkII and w is achieved:
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Finally, using Eq. (7b), the total vertical displacement w can be computed:
wII ¼ 1þ k
c

� �
wkII �

G
c

� �
d2wkII

dx2
ð9Þ
Thus, the total bending behaviour of a Timoshenko beam resting on Kerr-type elastic subgrade is governed
by Eqs. (6a), (6b), (8a), (8b) and (9).
3. Solution of the differential equations

3.1. Equations of regions I and III

The general solution of Eqs. (6a) and (6b) is:
Region Iðx 6 0Þ: wkIðxÞ ¼ D1e
mx þ D2e

�mxðm ¼
ffiffiffiffiffiffiffiffiffi
k=G

p
Þ ð10aÞ

Region IIIðx > LÞ: wkIIIðxÞ ¼ D3e
mðx�LÞ þ D4e

�mðx�LÞ ð10bÞ
The four integration constants D1 � D4 are calculated from the boundary conditions at x = 0, x = L and
x ! ±1 (Fig. 1). It is evident that for x ! ±1, wkI = wkII = 0, because the soil at regions I and III is un-
loaded. It must also be considered that, at the two ends of the beam (x = 0,x = L), the vertical displace-
ments of the shear layer wk are continuous (Fig. 1). Thus:
Region Iðx 6 0Þ: wkIðxÞ ¼ wk0e
mxðx 6 0Þ ð11aÞ

Region IIIðx > LÞ: wkIIIðxÞ ¼ wkLe
�mðx�LÞðx P LÞ ð11bÞ
Consequently, the solutions of Eqs. (10a) and (10b) depend on the unknown (at this point) vertical displace-
ments of the shear layer at the ends of the beam, wk0 and wkL. These can be calculated by solving the equa-
tions that govern the displacements at region II.

3.2. Equations of region II

The differential equations of region II (Eqs. (8a) and (8b)) are linear equations of the sixth order. The
general form of the solutions for the homogenous part of Eqs. (8a) and (8b) is:
wkIIðxÞ ¼
X6
i¼1

Cifi; wðxÞ ¼
X6
i¼1

CðIIÞ
i fi ð12Þ
Ci, C
ðIIÞ
i are the integration constants and fi are real functions, the form of which depends on the coefficients

of Eqs. (8a) and (8b), as well as on a series of auxiliary parameters involved in the solution of these equa-
tions (Morfidis, 2003). As a result, the form of functions fi depends on the values of the three parameters of
the soil model and on the constants that determine the mechanical behavior of the beam (bending and shear
stiffness). It can be shown (Appendix A, and Morfidis, 2003) that there exist many solution types for the
homogenous part of Eqs. (8a) and (8b). However, by taking into account the usual range of values of
the soil parameters (k,c,G) and of the mechanical parameters of the beams (EI,GBF

0), only two types of
solution (referred to as solution types 1 and 2) are of practical interest. These are composed of functions
fi, which can be found in Appendix A.



Table 1
Solution steps for the problem of infinite length beams on three-parameter elastic foundation

Step 1: Solution of Eqs. (8a) and (8b)

(Case 1 or 2! Appendix A)
wkðxÞ ¼

P6
i¼1Cifi wðxÞ ¼

P6
i¼1C

ðIÞ
i fi wðxÞ ¼

P6
i¼1C

ðIIÞ
i fi

Step 2: Relation between constants Ci; CðIÞ
i ; CðIIÞ

i
Eq. ð9) ! CðIÞ

i ¼ gwiðCiÞ
Eq. ð7c) ! CðIIÞ

i ¼ gwiðC
ðIÞ
i Þ ¼ gwi½gwiðCiÞ� ¼ gwwiðCiÞ

wðxÞ ¼
P6

i¼1gwiðCiÞfi wðxÞ ¼
P6

i¼1gwwiðCiÞfi
(gwi, gwwi: functions depending on the solution case)

Step 3: Calculation of constants CI

From the boundary conditions (Fig. 2):

ðx ¼ 0Þ )
w ¼ 0
w0
k ¼ 0

EIðw00Þ ¼ P
2

8<
: )

C2

C5

C6

8<
: ðx ! 1Þ ) wk ¼ 0 )

C1

C3

C4

8<
:

Step 4: Calculation of stresses M(x),V(x),VG(x)
MðxÞ ¼ ðEIÞw0ðxÞ V ðxÞ ¼ ðEIÞw00ðxÞ V GðxÞ ¼ Gw0

kðxÞ
(See Appendix B)
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4. Beams of infinite length on three-parameter elastic foundation

A first application of Eqs. (8a), (8b) and (9) is the solution of the problem of beams of infinite length. The
usefulness of the solution of the former problem lies in the fact that the comparison between various elastic
foundation models can be carried out without the complications (i.e., singularities) which occur at the ends
of finite length beams. Furthermore, the solution for beams of infinite length is, in many cases, an accept-
able approximation for the solution of the respective problem of long beams.

In what follows, a brief account of the calculations made in the case of Timoshenko beams under con-
centrated vertical load will be given. The method starts with the solutions (Eq. (12)) of Eqs. (8a) and (8b).
The sequence of the necessary steps is outlined in Table 1. The total number of the unknown constants of
these equations is 18, since each of the three unknown strains w, wk and w demands the estimation of six
integration constants. The boundary conditions produced by the application of the principle of stationary
total potential energy (Eq. (5b), in which boundaries x = 0 and L are substituted by boundaries x ! ±1),
are shown in Fig. 2. The number of boundary conditions is smaller than the number of the unknown con-
stants. However, the 18 constants are interrelated according to Eqs. (7c) and (9).

More specifically, it can be easily shown (Morfidis, 2003) that the integration constants can be expressed
as a function of only 6 constants (C1 to C6). It is therefore clear that, the symmetry of the problem also
being considered, the boundary conditions shown in Fig. 2 are sufficient for the calculation of the constants
Ci.

Having calculated Ci, the respective stresses and strains in the beam can be determined. The analytical
expressions of the stresses and strains for solution case 1 (Appendix A) are given in Appendix B.
Fig. 2. Mechanical model and boundary conditions for a Timoshenko beam of infinite length on three-parameter elastic foundation.
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5. Beams of finite length on three-parameter elastic foundation

The solution of the problem of beams of finite length is based on the simultaneous solution of Eqs. (6a),
(6b), (8a), (8b) and (9), which requires the determination of a total of 22 integration constants. However,
the integration constants that correspond to Eqs. (8a), (8b) and (9) of region II are interrelated through
Eqs. (7c) and (9) as noted in the preceding section. As a result, the number of the required constants is
10 and the boundary conditions of Fig. 1 are sufficient for their determination. The application of these
boundary conditions leads to a system of 10 algebraic equations, through which the unknown constants
can be calculated. Having determined the 10 integration constants, it is possible to calculate the strains
(w, wk, wc and w) and the respective stresses (M,V,VG—see Fig. 1).
6. Numerical examples

In this section, two simple yet typical problems are solved: (A) The problem of beams of infinite length
under a concentrated vertical force, and (B) the corresponding problem of beams of finite length under the
same type of loading. The main objectives of these two examples are:

a. The comparative evaluation of one, two and three-parameter models. It is for this purpose that a
comparison is made between the results of these models and those obtained from the use of 2-D finite
element models. Apart from the Kerr model, the other models under evaluation are (Fig. 3): (i) the
Winkler model (one-parameter model), (ii) the Pasternak model (two-parameter model, in which
the influence of the soil on either side of the beam is not considered), and (iii) the Vlasov model
(two-parameter model, in which the influence of the soil on either side of the beam is, in fact,
considered).

b. The application of a newly developed analytical method for a meaningful numerical estimation of val-
ues for the soil parameters of the Kerr model. The proposed method is based on modified Vlasov
model (see Section 7).
Fig. 3. Beams of finite length under concentrated vertical force—models and soil categories used in the numerical examples.
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It must be underlined that the choice of 2-D finite element models as reference models (�reference solu-
tion�) is based on the fact that they yield the most precise results within the framework of the fundamental
assumptions, on the basis of which the soil-beam interaction equations of the approximating mechanical
models under analysis are formulated. These fundamental assumptions are: (a) the assumption of the linear
elastic behavior of the beam and the subgrade, and, (b) the assumption of conditions of bilateral (in con-
trast with unilateral) contact between them. It is also worth mentioning that the solution using 2-D finite
elements is the most precise one possible in the case of plane stress problems. For this purpose it has been
assumed that plane stress conditions are valid and the width of the elastic subgrade is b = 0.35 m (Fig. 3).

For the numerical investigation of the two problems, (A) and (B), two special algorithms were pro-
grammed using Fortran 90/95. The first algorithm refers to the solution for one and two-parameter models,
and calculates the parameters k and G using the modified Vlasov model. The second algorithm relates to the
three-parameter Kerr model. This algorithm leads to an estimation of the values of the third parameter
(parameter c) of the Kerr model, while making use of the values of the parameters k and G that have been
obtained using the first algorithm. (For a detailed description of the underlying methodology see Section 7).
The finite element program SAP2000 (2000) was employed for the solutions using 2D finite element models
(see also Morfidis and Avramidis, 2002).

With respect to the numerical values of the elastic foundation constants, five categories of soil were con-
sidered, ranging from ‘‘very soft’’ to ‘‘hard’’ (Fig. 3). Since the depth of the elastic subgrade was set to 60 m,
it can be practically characterized as one of infinite depth. The items under investigation were the vertical
displacement (max uz) and the bending moment (max My) at the point of application of the external force,
where their largest values are encountered. Furthermore, the beam deformation curves are drawn in order
to serve as an indicator of the mechanical performance of the various soil models.

6.1. Beams of infinite length under concentrated vertical force

The comparison of results derived from the analysis of beams of infinite length (Fig. 2) constitutes a most
useful criterion in the evaluation of soil models, as they are not influenced (in contrast to finite length
beams) by the boundary conditions at the ends of the beams or by their length. Fig. 4 shows a comparison
of the three models under examination (Winkler, Vlasov and Kerr models) as to the deviations from the
reference results (i.e. the 2-D finite element model results) of both the maximum bending moments My
(a) (b)
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Fig. 4. Deviations of (a) the maximum bending moments My and (b) the maximum vertical displacements uz of the Winkler (W),
Vlasov (V) and Kerr (K) models from the respective values obtained from the reference 2-D finite element solution.
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(Fig. 4a) and the maximum vertical displacements uz (Fig. 4b). From Figs. 4a and b, three conclusions may
be drawn:

a. The superiority of the Kerr model over the other models is evident in the comparison of the maximum
bending moments as well as the maximum vertical displacements. In fact, when c = 7k (nck = 7, see
Section 7), this model displays deviations that do not exceed 7.5% in any case.

b. In general, the Winkler model produces higher values of bending moments and displacements than
the reference solution. More specifically, the deviations of the bending moments are more significant
in the case of ‘‘hard’’ soils (E4 and E5), and may amount up to 65%. The deviations of the vertical
displacements are of the same order of magnitude as the deviations of the bending moments.

c. The values of the bending moments and vertical displacements obtained from the Vlasov model are,
on the whole, smaller than the respective reference values. At the same time, the absolute values of
their deviations are smaller than the respective deviations of the Winkler model. As shown in Fig.
4a, the deviations of the bending moments in the case of the ‘‘hard’’ soils E4 and E5 do not rise above
45%. Again, as in the case of the Winkler model, the deviations of the displacements are of the same
order of magnitude as the deviations of the bending moments.

The superiority of the Kerr model against all other investigated models can be easily concluded from Fig.
5, where the beam deformation curves are shown (Soil category E3 is not included because its results almost
coincide with the results for soil category E2). The following remarks can be made:

a. The deformation curves of the Kerr model are a very good approximation of the 2D-FEM deforma-
tion curves along the whole length of the beam. (For x > 50 m they are practically identical).
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Fig. 5. Deformation curves of an infinite length beam under concentrated load.
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b. The deformation curves of the Vlasov model show major divergences for x < 10 m in case of ‘‘hard’’
soils (soil categories E4 and E5) and for x < 15 m in case of ‘‘softer’’ soils (soil categories E1 and E2).

c. The Winkler model deformation curves significantly diverge from the 2D-FEM deformation curves
along the whole length of the beam. Furthermore, they also qualitatively differ from the curves of
all the other soil models.

6.2. Beams of finite length under concentrated vertical force

The second example concerns with the problem of a finite length beam. The same type of loading as in
the previous case of infinite length beam is considered. This very simple type of loading has been choosen as
a first step towards the assessment of the comparative performance of the investigated soil models. Solu-
tions for other types of loading, which may be useful for a detailed and in-depth validation of the mechan-
ical behavior of the soil models, will be given in a following paper. The methodology used for the estimation
of the soil parameters� values is described in the next section (Section 7).

Fig. 6 shows comparisons between the values obtained from the use of the models of Fig. 3 and the val-
ues of the reference solution (2D-FEM solution), with respect toMy and uz. These results refer to beams for
which the factors k (see Eq. (16)) are equal to 0.94 (L = 6m—soil E1) or 1.10 (L = 10 m—soil E4). These
values of k are at the limit between regions 2 and 3 (see Table 2 in Section 7), where the three-parameter
-50%
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Kerr

max My max uz

nck=7 (E1)
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Fig. 6. Deviations (in %) of the maximum bending moments My and the maximum vertical displacements uz of the four foundation
models under investigation from the respective reference (2D-FEM model) solution values.

Table 2
Relation of the optimal relation factors nck to the relative stiffness index k

Region Limits of the value of k Comment

1 E1 k 6 0.9–0.95 Total convergence at the reference solution is accomplished. The factor nck is related to
k through polynomial functions (Fig. 9).

E4 k 6 0.7
2 E1 0.9–0.95 6 k 6 1.1–1.2 Total convergence is not accomplished. For values of nck � 104, the deviations

are smaller than 10%.
E4 0.7 6 k 6 0.9–0.95

3 E1 1.1–1.2 6 k 6 1.65–1.7 Total convergence is not accomplished. When nck � 7 (E1) or nck � 9 (E4),
the deviations are smaller than 10–15%.

E4 0.9–0.95 6 k 6 1.6–1.6
4 E1 kP 1.65–1.7 Total convergence is accomplished. For nck � 7–9 (E1) and nck � 9–13 (E4),

the deviations are smaller than 4%.
E4 kP 1.55–1.6
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model appears to be somewhat ineffective in terms of the convergence of the values of the bending
moments.

On the basis of Fig. 6, the following remarks can be made:

• As far as the maximum vertical displacements are concerned, the superiority of the three-parameter
Kerr model is obvious. This particular model displays deviations from the reference values that
are no higher than 6%. The results obtained from the application of the Vlasov model are satisfac-
tory as well (deviations up to 30–35%). In contrast, the results of the Winkler and Pasternak models
lead to deviations that exceed 150% and must, therefore, be rejected. From all this, it may be
inferred that the consideration of the deformations of the soil on either side of the beams constitutes
a fundamental parameter for the correct calculation of the vertical displacements of the foundation
beams. Only two of the ‘‘mechanical’’ models under examination, the Vlasov and Kerr models, offer this
potential.

• As to the maximum bending moments, the deviations are substantially smaller than those of the max-
imum vertical displacements. Three additional assumptions may be made:
a. The Vlasov and Kerr models (especially the first) yield the most precise results. This is particularly

evident in the case of the soil E1, in which the Winkler and Pasternak models prove to be inferior
to the other two models, though not considerably. More specifically, the Kerr and Winkler models
appear to be of equal merit.

b. In the case of the soil E4 (hard soil), the Kerr and Winkler models are equally efficient (with deviations
of the order of –14%). The Vlasov model is slightly inferior (deviation equal to –21%), while the Pas-
ternak model is clearly the least reliable in the group (deviation equal to –48%).

c. The consideration of the influence of the soil on either side of the beams is not of the same significance
as in the case of the convergence of the vertical displacements.
In Fig. 7 the beam deformation curves for soil categories E1 and E4 are shown. These results further
underpin the previous conclusions referring to the vertical displacements drawn from Fig. 6.
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Fig. 7. Deformation curves of a finite length beam under concentrated load at the centre.
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7. Estimation of the values of the soil parameters

The problem of specifying realistic values of the soil parameters involved in two- and three-parameter
models has already been addressed in the bibliography (e.g. Selvadurai, 1979; Kerr, 1985). The lack of
appropriate laboratory tests or in situ measurement methodologies, through which it would be possible
to overcome this problem, has also been acknowledged (Selvadurai, 1979). Concerning the simpler two-
parameter models, the sole method of defining the two soil parameters reported in the bibliography is
the analytical method of Vallabhan and Das (1988, 1991a,b), which is founded on a quite different formu-
lation of the equations of the two-parameter Vlasov model (modified Vlasov model). The solution using the
modified Vlasov model demands the programming of an iterative algorithm, thanks to which the simulta-
neous calculation of the two soil parameters is made possible.

With regard to three-parameter models, it is possible to relate their parameters with the modulus of elas-
ticity Es, the shear modulus Gs, and the depth H of the elastic subgrade, through Reisner�s relations (Reiss-
ner, 1967):
c1 ¼ Es=H c2 ¼ ðGsHÞ=ð3Þ c3 ¼ ðGsH 2Þ=ð12EsÞ ð13Þ
In addition, a relation between the parameters of the Reisner model and the respective parameters of the
Kerr model can be derived, if (Morfidis, 2003):
c ¼ 3k k ¼ ð4EsÞ=ð3HÞ G ¼ ð4HGsÞ=9 ð14Þ
In the present paper, a newly developed method for a meaningful numerical estimation of the values of the
three parameters is proposed. According to this method, the modified Vlasov model will be employed in
order to estimate two of the three soil parameters of the Kerr-type three-parameter model. It must be
emphasized that the parameter k (constant of the lower spring layer) and the parameter G (constant of
the shear layer) of the Kerr model correspond to the two respective parameters of the Vlasov model. It
is reminded that the two soil parameters of the Vlasov model are calculated by taking into account the
strain energy associated to the normal and shear stresses inside the elastic foundation (Vlasov and Leontiev,
1966). Therefore, the values of k and G that are obtained from the application of the modified Vlasov model
can be identified as the values of the respective parameters of the Kerr model. With regard to the third
parameter c of the Kerr model (constant of the upper spring layer), it is assumed that it is related to the
parameter k in the following way:
c ¼ nckk ð15Þ
The factor nck is a ‘‘relation factor’’ for the parameters c and k and expresses the relative axial stiffness of
the upper and lower spring layers. The relation of k and c through Eq. (15) is well-defined, since the param-
eters k and c represent constants of vertical springs. In the following, an investigation is carried out con-
cerning the possible existence of optimal relation factors nck, through which the greatest possible
convergence between the results of the Kerr model and those obtained from the use of 2-D finite element
models (which are regarded as ‘‘reference solution’’) is achieved.
7.1. Beams of infinite length under concentrated vertical force

Fig. 8 illustrates the results of the investigation of the existence of optimal relation factors nck, which was
based on the criterion of the convergence of the values of max uz and max My at the corresponding values
of the reference solution (i.e., the 2-D finite element model solution).
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From Fig. 8, the following conclusions emerge:

a. For the ‘‘soft’’ soils E1, E2 and E3—as far as the maximum bending moment My is concerned—a
considerably close convergence to the reference results is achieved (small deviations of the order of
0.5–2.5%), when the factor nck acquires values between 7 and 8 (c = 7�8k). The optimal value of
nck, for which the convergence of max uz at the respective reference value is achieved, ranges between
6 and 7 (c = 6–7k). More particularly, the deviations calculated for these values of the spring constant
c do not exceed 2.5%. On the basis of the above remarks, it may be suggested that, in the case of soils
with a low modulus of elasticity, the optimal value of nck is equal to 7 (c = 7k). This value produces an
optimal simultaneous convergence of both bending moments and vertical displacements at the respec-
tive reference values.

b. For the ‘‘hard’’ soils E4 and E5, the optimal convergence of the maximum bending moment max My

is achieved when the value of nck ranges between 10 and 11 (c = 10–11k). For these values, the devi-
ations of the bending moments do not exceed 2.5%. With respect to the optimal convergence of the
vertical displacements, this is achieved for nck = 7 (deviations smaller than 1%). For ‘‘hard’’ soils, as
opposed to ‘‘soft’’ soils, no single value of nck, which would result to an optimal convergence of both
max uz and max My, can be suggested.

7.2. Beams of finite length under concentrated vertical force

As part of the investigation of the solution for finite length beams, a parametric analysis was carried out,
in order to determine the dependence of the optimal relation factors nck on the index which describes the
relative stiffness of the soil-beam system. The definition of this index required the use of Vlasov�s relation
(Vlasov and Leontiev, 1966):
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� msÞGsbL

3

8EIð1� 2msÞ
3

s
ð16Þ
where Gs and ms are the shear modulus and Poison�s ratio for the soil medium respectively, EI is the stiffness
of the beam, L is its length and b the width of its cross-section.



I.E. Avramidis, K. Morfidis / International Journal of Solids and Structures xxx (2005) xxx–xxx 15

ARTICLE IN PRESS
The cases examined were those of the soils E1 and E4, i.e., of soils with a low and relatively high modulus
of elasticity respectively. As in the study of beams of infinite length, the quantities compared are the max-
imum vertical displacement uz and the maximum bending moment My. The parametric investigation led to
the assumption that, with regard to vertical displacements, the Kerr model achieves the optimal conver-
gence at the reference values when nck = 7 (for ‘‘soft’’ soils) or nck = 8 (for ‘‘hard’’ soils). These values pro-
duce deviations from the reference solutions that do not exceed 6%. However, even if the value of nck is set
to 7 regardless of the soil type (whether ‘‘hard’’ or ‘‘soft’’), the deviations are in no case higher than 10%.
(At this point, it should be clarified that the modified Vlasov model was employed for the calculation of the
parameters k and G of the Kerr model, as was pointed out in Section 7). On the contrary, in the case of
maximum bending moments My, it is not possible to determine a single value of nck for which the optimal
performance of the Kerr model is attained. The parametric analyses proved that the optimal values of nck
depend on the elastic features of the beam and the soil, as well as on the length of the beam. As a result, the
most appropriate way of modifying the value of nck is to relate it to the index k of the relative stiffness of the
soil-beam system (Eq. (16)). The form of the relation between the parameters nck and k is presented in
the following table.

From Table 2, the following may be concluded:

• For small values of k (region 1), the determination of the optimal factors nck demands non-linear regres-
sion analyses. A number of such analyses established the fact that the curves nck–k can be grouped
according to the modulus of elasticity of the soil (i.e., ‘‘soft’’ or ‘‘hard’’ soil). In Fig. 6, the curves
nck–k are given for the soils E1 (soft soil) and E4 (hard soil). This figure shows the curves nck–k which
correspond to the results of the analyses (and are, in essence, point sequences), as well as the curves (bold
lines) which correspond to the polynomial relations derived from the non-linear regression analyses.
From Fig. 9, it becomes clear that the curves nck–k exhibit a high degree of correlation (R2 � 1), i.e.,
there exists a strong interdependence of the parameters nck and k.

• For mean values of k (region 2), the Kerr model, in conjunction with the method used in order to deter-
mine its parameters, does not achieve a total convergence of the values of the bending moments at the
reference values. Nevertheless, when nck acquires very large values (nck � 104), the deviations do not rise
above 10%.

• For large values of k (regions 3 and 4), convergence is attained when the values of nck are small. In region
4, there is absolute coincidence between the values of k and the reference values, a fact not observed in
region 3. At this point, it is worth noting that if k > 1.65, the optimal factors nck are practically identical
with the optimal factors used for the convergence of the maximum bending moments of beams of infinite
length.
nck = -3008.6λ3 + 6617λ2 - 4841.7λ +1308.1
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8. Summary and conclusions

The problem of bending of Timoshenko beams on a Kerr-type, three-parameter elastic foundation
was presented and analytically solved. The problem was stated by formulating the differential equations
of equilibrium, as well as the necessary boundary conditions by using the principle of stationary potential
energy. A first conclusion reached is that there are only two possible forms of solution if the mechanical
parameters of the beams and of the soil acquire realistic values, i.e., values that fall within the usual range
for realistic beams and soil types. In this case, the solutions do not exhibit any peculiarity, as are uniquely
defined.

A rational procedure of numerically estimating the soil parameters involved in the two and three param-
eter models was also presented. The proposed procedure comprises the simultaneous application of the
two-parameter, modified Vlasov model and the three-parameter, Kerr model and has been shown to be
quite efficient, thus bypassing the necessity of experimental determination.

Furthermore, the numerical efficiency of the three-parameter model formulation was verified by means
of simple numerical examples and through comparison with one- and two-parameter models. The solutions
of problems of beams of infinite and finite length under a concentrated vertical load formed the basis for
this comparison, which led to the following additional conclusions:

(a) It is possible to assign specific values to the three parameters of the Kerr model, from which results are
recovered that agree to a high degree with those obtained from use of 2-D finite element models. The
specific values of these parameters are derived during application of the aforementioned procedure.

(b) In problems concerning beams of finite length, the values of the above parameters depend strongly on
the relative stiffness of the soil-beam system.

(c) The model which produces the best results is the Vlasov model, especially in regards to the vertical
displacements of infinite length beams.

(d) In case of beams of finite length, the consideration of the soil on either side of the beams is of par-
amount importance if acceptable results for the vertical displacements are to be achieved. This con-
sideration was found to be less significant for the calculation of the bending moments.
Appendix A. Solution of the homogenous part of the differential equations (8a) and (8b)

The homogenous part of Eqs. (8a) and (8b) has the following form:
d6y
dx6

þ J 1

d4y
dx4

þ J 2

d2y
dx2

þ J 3y ¼ 0 ðA:1Þ

J 1 ¼ � k þ c
G

þ c
U

� �
J 2 ¼

c
U

U
EI

þ k
G

� �
J 3 ¼ � kc

EIG
ðA:2Þ
(where y may represent of the functions w, wk, w).
The auxiliary equation of (A.1) is:
r6 þ J 1r4 þ J 2r2 þ J 3 ¼ 0 ðA:3Þ
Considering that r2 = l, the following relation is obtained:
l3 þ J 1l
2 þ J 2lþ J 3 ¼ 0 ðA:4Þ
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With the additional consideration that l = t � (J1/3), (A.4) becomes:
Case
t3 þ ð3aÞt þ 2b ¼ 0 ðA:5Þ

where
a ¼ ð1=3Þ½�ðJ 2
1=3Þ þ J 2� and b ¼ ð1=2Þ½ð2J 3

1=27Þ � ðJ 1J 2=3Þ þ J 3� ðA:6Þ

Depending on the sign of the quantity D = a3 + b2, the solution types of (A.5) are divided into the following
general solution categories:

Category A: D = a3 + b2 > 0: in this case, the root t1 of (A.5) is a real number, while t2 and t3 are complex
numbers. As a result, the root l1 of (A.3) is a real number and l2, l3 are complex numbers. In
this category, the sign of l is significant, since it leads to two subcategories of solution.

Category B: D = a3 + b2 < 0: here, t1, t2, t3, and thus l1l2 and l3 are real numbers. In this case, the general
solution type of (A.1) is dependent on the sign of l1, l2 and l3. Therefore, in the general case,
it is possible to encounter forms of solution that are as many as the combinations of the signs
of the roots l1, l2 and l3. Consequently, if the possibility that some of the roots l1, l2, l3 may
be equal is excluded, the possible solution cases of category B amount to 8.

Category C: D = a3 + b2 = 0: in this case yet again, the roots t1, t2, t3, and thus the roots l1, l2, l3 are real
numbers. In practice, however, this category of solution is extremely unlikely to come up, as
this would require certain combinations of the values of the three soil parameters.

On the basis of the remarks made above, and assuming that a solution belonging to category C is almost
impossible to occur, it is determined that the possible solution cases of the homogenous equations of (8a),
(8b) are 10.

These possible solution cases may be further investigated using one of the three relations through which
the roots of (A.4) are associated (Viéta�s formulas: see i.e. Borwein and Erdélyi, 1995):
l1l2l3 ¼ �J 3 ðA:7Þ

By using (A.7) with category A, it is concluded that the sign of l1 is the opposite of that of the quantity

J3 (provided that the product of the complex conjugate numbers l2 and l3 is always a real positive number).
Nevertheless, the quantity J3 is always negative and thus the root l1 is always positive. Therefore, a possible
solution case of the homogenous equations of (8a) and (8b) is:
1 f1 f2 f3 f4 f5 f6

eðR1Þx e�ðR1Þx e(R)x cos(Qx) e(R)x sin(Qx) e�(R)x cos(Qx) e�(R)x sin(Qx)

R1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�bþ

ffiffiffiffi
D

p
3

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�b�

ffiffiffiffi
D

p
3

q
� ðJ1=3Þ

r
R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2

p
þ mÞ=2

q
Q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2

p
� mÞ=2

q

m¼�ð1=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�bþ

ffiffiffiffi
D

p
3

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�b�

ffiffiffiffi
D

p
3

q
þð2J 1=3Þ

� �
n¼ð

ffiffiffi
3

p
=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�bþ

ffiffiffiffi
D

p
3

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�b�

ffiffiffiffi
D

p
3

q� �
In order to investigate the possible subcategories of category B, the signs of the real roots of Eq. (A.4)
should be checked. It is for this purpose that the function f(l) = l3 + J1l

2 + J2l + J3 is considered. The
signs of the coefficients J1, J2 and J3 is always J1 < 0, J2 > 0, J3 < 0. It can be proved that, for the afore-
mentioned signs of J1, J2 and J3, the first derivative of f(l) has two positive roots (i.e., l0

1 and l0
2), for which

l0
1 < l0

2, f ðl0
1Þ ¼ 2ð

ffiffiffiffiffiffiffiffi
�a3

p
þ bÞ > 0, and f ðl0

2Þ ¼ 2ð�
ffiffiffiffiffiffiffiffi
�a3

p
þ bÞ < 0. In addition, f(0) = J3 < 0. As a result,

f ð0Þf ðl0
1Þ < 0 and f ðl0

1Þf ðl0
2Þ < 0, indicating that Eq. (A.4) has one root in the interval (0,l0

1) and another
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in (l0
1; l

0
2). However, given that l0

1 > 0 and l0
2 > 0, (A.4) has two positive roots. At the same time, from Eq.

(A.7), it is obtained that the third root must be positive and, as a consequence l1 > 0, l2 > 0 and l3 > 0. The
second possible solution subcategory of the homogenous equations of (8a) and (8b) is thus expressed in the
following way:
Case 2 f1 f2 f3 f4 f5 f6

e(R)x e�(R)x eðR1Þx eðR2Þx e�ðR1Þx e�ðR2Þx

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ffiffiffiffiffiffiffi
�a

p
cos /

3


 �
� J1

3

r
R1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ffiffiffiffiffiffiffi
�a

p
cos /þ2p

3


 �
� J1

3

r
R2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ffiffiffiffiffiffiffi
�a

p
cos /þ4p

3


 �
� J1

3

r

where / ¼ cos�1ð�b=
ffiffiffiffiffiffiffiffi
�a3

p
Þ.
Appendix B

Stresses and strains for beams of infinite length on three-parameter elastic foundation (Solution
Case 1):
wðxÞ ¼ P
Dk

A1ðA5Q� A6RÞe�R1x þ ½�L1 cosðQxÞ þ L2 sinðQxÞ�e�Rx
� �

L1 ¼ A3ðA4Q� A6R1Þ þ A2ðA4R� A5R1Þ; L2 ¼ A2ðA4Q� A6R1Þ � A3ðA4R� A5R1Þ

wkðxÞ ¼
P
Dk

ðA5Q� A6RÞe�R1x � ½ðA4Q� A6R1Þ cosðQxÞ þ ðA4R� A5R1Þ sinðQxÞ�e�Rx
� �

wðxÞ ¼ P
Dk

f�A4ðA5Q� A6RÞe�R1x þ ½L3 cosðQxÞ þ L4 sinðQxÞ�e�Rxg

L3 ¼ �A6ðA4R� A5R1Þ þ A5ðA4Q� A6R1Þ; L4 ¼ A5ðA4R� A5R1Þ þ A6ðA4Q� A6R1Þ

MðxÞ ¼ �EIP
Dk

f�A4R1ðA5Q� A6RÞe�R1x � ½ðQL4 � RL3Þ cosðQxÞ � ðQL3 þ RL4Þ sinðQxÞ�e�Rxg

V ðxÞ ¼ �EIP
Dk

A4R2
1ðA5Q� A6RÞe�R1x � ½L3ðR2 � Q2Þ � 2RQL4� cosðQxÞþ

þ½L4ðR2 � Q2Þ þ 2RQL3� sinðQxÞ

" #
e�Rx

( )

V GðxÞ ¼
GP
Dk

�R1ðA5Q� A6RÞe�R1x þ ½S1 cosðQxÞ þ S2 sinðQxÞ�e�Rx
� �

S1 ¼ RðA4Q� A6R1Þ � QðA4R� A5R1Þ; S2 ¼ RðA4R� A5R1Þ þ QðA4Q� A6R1Þ

Dk ¼ 2EI R1ðA5b2 � A6b1Þ þ R2
1A4ðA6R� A5QÞ þ A4ðb1Q� b2RÞ

� 	
b1 ¼ ðR2 � Q2ÞA5 � ð2RQÞA6; b2 ¼ ðR2 � Q2ÞA6 þ ð2RQÞA5
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A1 ¼ 1þ k
c

� �
� G

c
R2
1; A2 ¼ 2RQ

G
c

� �
; A3 ¼ 1þ k

c

� �
� G

c
ðR2 � Q2Þ;

a1 ¼ A3Rþ A2Q

a2 ¼ A2R� A3Q

A4 ¼
UR1

�EIR2
1 þ U

� �
A1; A5 ¼

a1b1 þ a2b2

b2
1 þ b2

2

 !
U; A6 ¼

a1b2 � a2b1

b2
1 þ b2

2

 !
U;

b1 ¼ �EIðR2 � Q2Þ þ U

b2 ¼ 2ðEIÞRQ
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